Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Sci Rep ; 13(1): 10958, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414788

RESUMEN

The advent of combined antiretroviral therapy (cART) has been instrumental in controlling HIV-1 replication and transmission and decreasing associated morbidity and mortality. However, cART alone is not able to cure HIV-1 due to the presence of long-lived, latently infected immune cells, which re-seed plasma viremia when cART is interrupted. Assessment of HIV-cure strategies using ex vivo culture methods for further understanding of the diversity of reactivated HIV, viral outgrowth, and replication dynamics are enhanced using ultrasensitive digital ELISA based on single-molecule array (Simoa) technology to increase the sensitivity of endpoint detection. In viral outgrowth assays (VOA), exponential HIV-1 outgrowth has been shown to be dependent upon initial virus burst size surpassing a critical growth threshold of 5100 HIV-1 RNA copies. Here, we show an association between ultrasensitive HIV-1 Gag p24 concentrations and HIV-1 RNA copy number that characterize viral dynamics below the exponential replication threshold. Single-genome sequencing (SGS) revealed the presence of multiple identical HIV-1 sequences, indicative of low-level replication occurring below the threshold of exponential outgrowth early during a VOA. However, SGS further revealed diverse related HIV variants detectable by ultrasensitive methods that failed to establish exponential outgrowth. Overall, our data suggest that viral outgrowth occurring below the threshold necessary for establishing exponential growth in culture does not preclude replication competence of reactivated HIV, and ultrasensitive detection of HIV-1 p24 may provide a method to detect previously unquantifiable variants. These data strongly support the use of the Simoa platform in a multi-prong approach to measuring latent viral burden and efficacy of therapeutic interventions aimed at an HIV-1 cure.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , VIH-1/genética , Cinética , Ensayo de Inmunoadsorción Enzimática , Proteína p24 del Núcleo del VIH , ARN , Carga Viral , Linfocitos T CD4-Positivos , Latencia del Virus
2.
J Med Chem ; 65(13): 9396-9417, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35754374

RESUMEN

Minor structural modifications of acyclic nucleoside phosphonates can dramatically affect their antiviral properties. This work discloses a shift in the selectivity spectrum of 3-hydroxy-2-(phosphonomethoxy)propyl (HPMP) nucleotides from herpesviruses toward hepatitis B virus (HBV) induced by their acyclic chain 2-substitution with a nonpolar group. Two series of racemic (R,S)-2-methyl-3-hydroxy-2-(phosphonomethoxy)propyl (MHPMP) and (R,S)-2-ethynyl-3-hydroxy-2-(phosphonomethoxy)propyl (EHPMP) nucleotides were initially synthesized. Among these, guanine-containing derivatives exhibited significant anti-HBV activities in the submicromolar range. Enantioenriched MHPMPG and EHPMPG analogues were subsequently obtained by Sharpless asymmetric epoxidation. The (S)-enantiomers possessed an 8- to 26-fold higher potency than the relative (R)-forms. A further comparison of the EC90 values indicated that (S)-EHPMPG inhibited HBV replication more effectively than its 2-methyl analogue. A phosphonodiamidate prodrug of (S)-EHPMPG was thus prepared and found to exert a remarkably high anti-HBV activity (EC50 = 9.27 nM) with excellent selectivity (SI50 > 10,787), proving to be a promising candidate for anti-HBV drug development.


Asunto(s)
Herpesvirus Cercopitecino 1 , Organofosfonatos , Antivirales/química , Antivirales/farmacología , Virus de la Hepatitis B , Nucleósidos/química , Nucleósidos/farmacología , Nucleótidos , Organofosfonatos/química , Organofosfonatos/farmacología
3.
Viruses ; 14(4)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35458546

RESUMEN

HIV-1 Vpu targets the host cell proteins CD4 and BST-2/Tetherin for degradation, ultimately resulting in enhanced virus spread and host immune evasion. The discovery and characterization of small molecules that antagonize Vpu would further elucidate the contribution of Vpu to pathogenesis and lay the foundation for the study of a new class of novel HIV-1 therapeutics. To identify novel compounds that block Vpu activity, we have developed a cell-based 'gain of function' assay that produces a positive signal in response to Vpu inhibition. To develop this assay, we took advantage of the viral glycoprotein, GaLV Env. In the presence of Vpu, GaLV Env is not incorporated into viral particles, resulting in non-infectious virions. Vpu inhibition restores infectious particle production. Using this assay, a high throughput screen of >650,000 compounds was performed to identify inhibitors that block the biological activity of Vpu. From this screen, we identified several positive hits but focused on two compounds from one structural family, SRI-41897 and SRI-42371. We developed independent counter-screens for off target interactions of the compounds and found no off target interactions. Additionally, these compounds block Vpu-mediated modulation of CD4, BST-2/Tetherin and antibody dependent cell-mediated toxicity (ADCC). Unfortunately, both SRI-41897 and SRI-42371 were shown to be specific to the N-terminal region of NL4-3 Vpu and did not function against other, more clinically relevant, strains of Vpu; however, this assay may be slightly modified to include more significant Vpu strains in the future.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Proteínas del Virus de la Inmunodeficiencia Humana , Proteínas Reguladoras y Accesorias Virales , Proteínas Viroporinas , Fármacos Anti-VIH/química , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Proteínas Ligadas a GPI/metabolismo , VIH-1/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Virus de la Leucemia del Gibón/metabolismo , Bibliotecas de Moléculas Pequeñas , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Viroporinas/antagonistas & inhibidores
4.
ACS Infect Dis ; 8(1): 91-105, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34985256

RESUMEN

HIV-1 Nef is an attractive target for antiretroviral drug discovery because of its role in promoting HIV-1 infectivity, replication, and host immune system avoidance. Here, we applied a screening strategy in which recombinant HIV-1 Nef protein was coupled to activation of the Src-family tyrosine kinase Hck, which enhances the HIV-1 life cycle in macrophages. Nef stimulates recombinant Hck activity in vitro, providing a robust assay for chemical library screening. High-throughput screening of more than 730 000 compounds using the Nef·Hck assay identified six unique hit compounds that bound directly to recombinant Nef by surface plasmon resonance (SPR) in vitro and inhibited HIV-1 replication in primary macrophages in the 0.04 to 5 µM range without cytotoxicity. Eighty-four analogs were synthesized around an isothiazolone scaffold from this series, many of which bound to recombinant Nef and inhibited HIV-1 infectivity in the low to submicromolar range. Compounds in this series restored MHC-I to the surface of HIV-infected primary cells and disrupted a recombinant protein complex of Nef with the C-terminal tail of MHC-I and the µ1 subunit of the AP-1 endocytic trafficking protein. Nef inhibitors in this class have the potential to block HIV-1 replication in myeloid cells and trigger recognition of HIV-infected cells by the adaptive immune system in vivo.


Asunto(s)
VIH-1 , Regulación hacia Abajo , VIH-1/metabolismo , Macrófagos/metabolismo , Replicación Viral , Familia-src Quinasas/metabolismo
5.
RSC Med Chem ; 12(5): 804-808, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34124679

RESUMEN

The substantial impact of acyclic nucleoside phosphonates (ANPs) on human medicine encourages the synthesis of new ANP analogues with a potentially differentiated antiviral spectrum. Herein, we demonstrate the functionalization of the 2-position of the (R,S)-3-hydroxy-2-(phosphonomethoxy)propyl side-chain of an inactive ANP with a polar cyano group to generate a thymine analogue with selective inhibition of hepatitis B virus (HBV) replication (SI > 302; EC50 = 0.33 µM), without significant antiretroviral activity. These findings suggest new strategies to synthesize unique ANPs with a targeted antiviral profile.

6.
J Infect Dis ; 224(7): 1209-1218, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32147687

RESUMEN

BACKGROUND: Evaluations of human immunodeficiency virus (HIV) curative interventions require reliable and efficient quantification of replication-competent latent reservoirs. The "classic" quantitative viral outgrowth assay (QVOA) has been regarded as the reference standard, although prohibitively resource and labor intensive. We compared 6 "next-generation" viral outgrowth assays, using polymerase chain reaction or ultrasensitive p24 to assess their suitability as scalable proxies for QVOA. METHODS: Next-generation QVOAs were compared with classic QVOA using single leukapheresis-derived samples from 5 antiretroviral therapy-suppressed HIV-infected participants and 1 HIV-uninfected control; each laboratory tested blinded batches of 3 frozen and 1 fresh sample. Markov chain Monte Carlo methods estimated extra-Poisson variation at aliquot, batch, and laboratory levels. Models also estimated the effect of testing frozen versus fresh samples. RESULTS: Next-generation QVOAs had similar estimates of variation to QVOA. Assays with ultrasensitive readout reported higher infectious units per million values than classic QVOA. Within-batch testing had 2.5-fold extra-Poisson variation (95% credible interval [CI], 2.1-3.5-fold) for next-generation assays. Between-laboratory variation increased extra-Poisson variation to 3.4-fold (95% CI, 2.6-5.4-fold). Frozen storage did not substantially alter infectious units per million values (-18%; 95% CI, -52% to 39%). CONCLUSIONS: The data offer cautious support for use of next-generation QVOAs as proxies for more laborious QVOA, while providing greater sensitivities and dynamic ranges. Measurement of latent reservoirs in eradication strategies would benefit from high throughput and scalable assays.


Asunto(s)
Infecciones por VIH , VIH-1/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Latencia del Virus , Replicación Viral , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos , Estudios de Casos y Controles , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Transcriptasa Inversa del VIH , VIH-1/aislamiento & purificación , Humanos , Leucaféresis , Carga Viral , Replicación Viral/fisiología
7.
Viruses ; 12(12)2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291455

RESUMEN

The ongoing pandemic spread of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) demands skillful strategies for novel drug development, drug repurposing and cotreatments, in particular focusing on existing candidates of host-directed antivirals (HDAs). The developmental drug IMU-838, currently being investigated in a phase 2b trial in patients suffering from autoimmune diseases, represents an inhibitor of human dihydroorotate dehydrogenase (DHODH) with a recently proven antiviral activity in vitro and in vivo. Here, we established an analysis system for assessing the antiviral potency of IMU-838 and DHODH-directed back-up drugs in cultured cell-based infection models. By the use of SARS-CoV-2-specific immunofluorescence, Western blot, in-cell ELISA, viral yield reduction and RT-qPCR methods, we demonstrated the following: (i) IMU-838 and back-ups show anti-SARS-CoV-2 activity at several levels of viral replication, i.e., protein production, double-strand RNA synthesis, and release of infectious virus; (ii) antiviral efficacy in Vero cells was demonstrated in a micromolar range (IMU-838 half-maximal effective concentration, EC50, of 7.6 ± 5.8 µM); (iii) anti-SARS-CoV-2 activity was distinct from cytotoxic effects (half-cytotoxic concentration, CC50, >100 µM); (iv) the drug in vitro potency was confirmed using several Vero lineages and human cells; (v) combination with remdesivir showed enhanced anti-SARS-CoV-2 activity; (vi) vidofludimus, the active determinant of IMU-838, exerted a broad-spectrum activity against a selection of major human pathogenic viruses. These findings strongly suggest that developmental DHODH inhibitors represent promising candidates for use as anti-SARS-CoV-2 therapeutics.


Asunto(s)
Antivirales/farmacología , Reposicionamiento de Medicamentos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/química , Chlorocebus aethiops , Ensayos Clínicos Fase II como Asunto , Dihidroorotato Deshidrogenasa , Descubrimiento de Drogas , Sinergismo Farmacológico , Humanos , Células Vero , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
8.
J Med Chem ; 63(22): 13851-13860, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33191744

RESUMEN

Standard literature procedures for the chemical synthesis of l-threose nucleosides generally employ l-ascorbic acid as starting material. Herein, we have explored two alternative routes that start from either l-arabitol or l-diethyl tartrate, both affording 2-O-methyl-l-threofuranose as a key building block for nucleobase incorporation. The access to multigram quantities of this glycosyl donor in a reproducible fashion allows for the preparation of 2'-deoxy-α-l-threofuranosyl phosphonate nucleosides on a large scale. This methodology was applied to the gram scale synthesis of an aryloxy amidate prodrug of phosphonomethoxydeoxythreosyl adenine. This prodrug exerted potent activity against an entecavir-resistant hepatitis B virus (HBV) strain, while leading to a significant reduction in the levels of HBV covalently closed circular DNA in a cellular assay. Furthermore, its remarkable anti-HBV efficacy was also confirmed in vivo using a hydrodynamic injection-based HBV mouse model, without relevant toxicity and systemic exposure occurring.


Asunto(s)
Antivirales/farmacología , ADN Circular/genética , Farmacorresistencia Viral/efectos de los fármacos , Guanina/análogos & derivados , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Profármacos/farmacología , Adenina/química , Animales , ADN Circular/análisis , ADN Viral/análisis , ADN Viral/genética , Guanina/farmacología , Hepatitis B/virología , Virus de la Hepatitis B/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Nucleósidos/química , Replicación Viral
9.
Adv Virol ; 2020: 8844061, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33110426

RESUMEN

Approximately 257 million people chronically infected with hepatitis B virus (HBV) worldwide are at risk of developing hepatocellular carcinoma (HCC). However, despite the availability of potent nucleoside/tide inhibitors, currently there are no curative therapies for chronic HBV infections. To identify potential new antiviral molecules, a select group of compounds previously evaluated in clinical studies were tested against 12 different viruses. Amongst the compounds tested, SRI-32007 (CYT997) demonstrated antiviral activity against HBV (genotype D) in HepG2.2.2.15 cell-based virus yield assay with 50% effective concentration (EC50) and selectivity index (SI) of 60.1 nM and 7.2, respectively. Anti-HBV activity of SRI-32007 was further confirmed against HBV genotype B in huh7 cells with secreted HBe antigen endpoint (EC50 40 nM and SI 250). To determine the stage of HBV life cycle inhibited by SRI-32007, time of addition experiment was conducted in HepG2-NTCP cell-based HBV infectious assay. Results indicated that SRI-32007 retained anti-HBV activity even when added 72 hours postinfection (72 h). Additional mechanism of action studies demonstrated potent inhibition of HBV core promoter activity by SRI-32007 with an EC50 of 40 nM and SI of >250. This study demonstrates anti-HBV activity of a repurposed compound SRI-32007 through inhibition of HBV core promoter activity. Further evaluation of SRI-32007 in HBV animal models is needed to confirm its activity in vivo. Our experiments illustrate the utility of repurposing strategy to identify novel antiviral chemical leads. HBV core promoter inhibitors such as SRI-32007 might enable the development of novel therapeutic strategies to combat HBV infections.

10.
PLoS Pathog ; 15(10): e1008074, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31609991

RESUMEN

Studies have demonstrated that intensive ART alone is not capable of eradicating HIV-1, as the virus rebounds within a few weeks upon treatment interruption. Viral rebound may be induced from several cellular subsets; however, the majority of proviral DNA has been found in antigen experienced resting CD4+ T cells. To achieve a cure for HIV-1, eradication strategies depend upon both understanding mechanisms that drive HIV-1 persistence as well as sensitive assays to measure the frequency of infected cells after therapeutic interventions. Assays such as the quantitative viral outgrowth assay (QVOA) measure HIV-1 persistence during ART by ex vivo activation of resting CD4+ T cells to induce latency reversal; however, recent studies have shown that only a fraction of replication-competent viruses are inducible by primary mitogen stimulation. Previous studies have shown a correlation between the acquisition of effector memory phenotype and HIV-1 latency reversal in quiescent CD4+ T cell subsets that harbor the reservoir. Here, we apply our mechanistic understanding that differentiation into effector memory CD4+ T cells more effectively promotes HIV-1 latency reversal to significantly improve proviral measurements in the QVOA, termed differentiation QVOA (dQVOA), which reveals a significantly higher frequency of the inducible HIV-1 replication-competent reservoir in resting CD4+ T cells.


Asunto(s)
Linfocitos T CD4-Positivos/virología , VIH-1/inmunología , VIH-1/fisiología , Memoria Inmunológica/inmunología , Latencia del Virus/inmunología , Anciano , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Infecciones por VIH/inmunología , VIH-1/crecimiento & desarrollo , Humanos , Masculino , Persona de Mediana Edad , Provirus/crecimiento & desarrollo , Carga Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
11.
PLoS Comput Biol ; 15(4): e1006849, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30978183

RESUMEN

Quantitative viral outgrowth assays (QVOA) use limiting dilutions of CD4+ T cells to measure the size of the latent HIV-1 reservoir, a major obstacle to curing HIV-1. Efforts to reduce the reservoir require assays that can reliably quantify its size in blood and tissues. Although QVOA is regarded as a "gold standard" for reservoir measurement, little is known about its accuracy and precision or about how cell storage conditions or laboratory-specific practices affect results. Owing to this lack of knowledge, confidence intervals around reservoir size estimates-as well as judgments of the ability of therapeutic interventions to alter the size of the replication-competent but transcriptionally inactive latent reservoir-rely on theoretical statistical assumptions about dilution assays. To address this gap, we have carried out a Bayesian statistical analysis of QVOA reliability on 75 split samples of peripheral blood mononuclear cells (PBMC) from 5 antiretroviral therapy (ART)-suppressed participants, measured using four different QVOAs at separate labs, estimating assay precision and the effect of frozen cell storage on estimated reservoir size. We found that typical assay results are expected to differ from the true value by a factor of 1.6 to 1.9 up or down. Systematic assay differences comprised a 24-fold range between the assays with highest and lowest scales, likely reflecting differences in viral outgrowth readout and input cell stimulation protocols. We also found that controlled-rate freezing and storage of samples did not cause substantial differences in QVOA compared to use of fresh cells (95% probability of < 2-fold change), supporting continued use of frozen storage to allow transport and batched analysis of samples. Finally, we simulated an early-phase clinical trial to demonstrate that batched analysis of pre- and post-therapy samples may increase power to detect a three-fold reservoir reduction by 15 to 24 percentage points.


Asunto(s)
Infecciones por VIH/virología , VIH-1 , Carga Viral/métodos , Latencia del Virus , Fármacos Anti-VIH/uso terapéutico , Teorema de Bayes , Linfocitos T CD4-Positivos/virología , Biología Computacional , Simulación por Computador , Infecciones por VIH/tratamiento farmacológico , VIH-1/fisiología , Humanos , Leucocitos Mononucleares/virología , Funciones de Verosimilitud , Cadenas de Markov , Método de Montecarlo , Reproducibilidad de los Resultados , Carga Viral/estadística & datos numéricos , Replicación Viral
12.
Eur J Med Chem ; 161: 533-542, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30390441

RESUMEN

In previous work, we described 6-6'-bisindole compounds targeting a hydrophobic pocket on the N-heptad repeat region of viral glycoprotein-41 as effective inhibitors of HIV-1 fusion. Two promising compounds with sub-micromolar IC50's contained a benzoic acid group and a benzoic acid ester attached at the two indole nitrogens. Here we have conducted a thorough structure-activity relationship (SAR) study evaluating the contribution of each of the ring systems and various substituents to compound potency. Hydrophobicity, polarity and charge were varied to produce 35 new compounds that were evaluated in binding, cell-cell fusion and viral infectivity assays. We found that (a) activity based solely on increasing hydrophobic content plateaued at ∼ 200 nM; (b) the bisindole scaffold surpassed other heterocyclic ring systems in efficacy; (c) a polar interaction possibly involving Gln575 in the pocket could supplant less specific hydrophobic interactions; and (d) the benzoic acid ester moiety did not appear to form specific contacts with the pocket. The importance of this hydrophobic group to compound potency suggests a mechanism whereby it might interact with a tertiary component during fusion, such as membrane. A promising small molecule 10b with sub-µM activity was discovered with molecular weight <500 da and reduced logP compared to earlier compounds. The work provides insight into requirements for small molecule inhibition of HIV-1 fusion.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/antagonistas & inhibidores , Inhibidores de Fusión de VIH/farmacología , Indoles/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Dosis-Respuesta a Droga , Proteína gp41 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/síntesis química , Inhibidores de Fusión de VIH/química , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/síntesis química , Indoles/química , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
13.
J Drug Des Res ; 5(2)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30393786

RESUMEN

Recent efforts by both academic and pharmaceutical researchers have focused on the HIV-1 capsid (CA) protein as a new therapeutic target. An interprotomer pocket within the hexamer configuration of the CA, which is also a binding site for key host dependency factors, is the target of the most widely studied CA inhibitor compound PF-3450074 (PF-74). Despite its popularity, PF-74 suffers from properties that limit its usefulness as a lead, most notably it's extremely poor metabolic stability. To minimize unfavorable qualities, we investigated bioisosteric modification of the PF-74 scaffold as a first step in redeveloping this compound. Using a field-based bioisostere identification method, coupled with biochemical and biological assessment, we have created four new compounds that inhibit HIV-1 infection and that bind to the assembled CA hexamer. Detailed mechanism of action studies indicates that the modifications alter the manner in which these new compounds affect HIV-1 capsid core stability, as compared to the parental compound. Further investigations are underway to redevelop these compounds to optimize potency and drug-like characteristics and to deeply define the mechanism of action.

14.
Sci Rep ; 8(1): 16662, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413769

RESUMEN

Acyclovir (ACV) is an effective antiviral agent for treating lytic Herpes Simplex virus, type 1 (HSV-1) infections, and it has dramatically reduced the mortality rate of herpes simplex encephalitis. However, HSV-1 resistance to ACV and its derivatives is being increasingly documented, particularly among immunocompromised individuals. The burgeoning drug resistance compels the search for a new generation of more efficacious anti-herpetic drugs. We have previously shown that trans-dihydrolycoricidine (R430), a lycorane-type alkaloid derivative, effectively inhibits HSV-1 infections in cultured cells. We now report that R430 also inhibits ACV-resistant HSV-1 strains, accompanied by global inhibition of viral gene transcription and enrichment of H3K27me3 methylation on viral gene promoters. Furthermore, we demonstrate that R430 prevents HSV-1 reactivation from latency in an ex vivo rodent model. Finally, among a panel of DNA viruses and RNA viruses, R430 inhibited Zika virus with high therapeutic index. Its therapeutic index is comparable to standard antiviral drugs, though it has greater toxicity in non-neuronal cells than in neuronal cells. Synthesis of additional derivatives could enable more efficacious antivirals and the identification of active pharmacophores.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Antivirales/farmacología , Infecciones por Virus ADN/tratamiento farmacológico , Virus ADN/efectos de los fármacos , Infecciones por Virus ARN/tratamiento farmacológico , Virus ARN/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Células Cultivadas , Chlorocebus aethiops , Infecciones por Virus ADN/virología , Humanos , Ratones , Infecciones por Virus ARN/virología , Células Vero
15.
PLoS One ; 13(2): e0192512, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29415006

RESUMEN

The HIV-1 Nef accessory protein is essential for viral pathogenicity and AIDS progression. Nef forms complexes with multiple host cell factors to facilitate viral replication and promote immune escape of HIV-infected cells. Previous X-ray crystal structures demonstrate that Nef forms homodimers, the orientation of which are influenced by host cell binding partners. In cell-based fluorescence complementation assays, Nef forms homodimers at the plasma membrane. However, recombinant Nef proteins often exist as monomers in solution, suggesting that membrane interaction may also trigger monomer to dimer transitions. In this study, we show that monomeric Nef core proteins can be induced to form dimers in the presence of low concentrations of the non-ionic surfactant, ß-octyl glucoside (ßOG). X-ray crystallography revealed that a single ßOG molecule is present in the Nef dimer, with the 8-carbon acyl chain of the ligand binding to a hydrophobic pocket formed by the dimer interface. This Nef-ßOG dimer interface involves helix αB, as observed in previous dimer structures, as well as a helix formed by N-terminal residues 54-66. Nef dimer formation is stabilized in solution by the addition of ßOG, providing biochemical validation for the crystal structure. These observations together suggest that the interaction with host cell lipid mediators or other hydrophobic ligands may play a role in Nef dimerization, which has been previously linked to multiple Nef functions including host cell protein kinase activation, CD4 downregulation, and enhancement of HIV-1 replication.


Asunto(s)
Glucósidos/farmacología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , VIH-1 , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química
16.
J Med Virol ; 90(1): 8-12, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28851097

RESUMEN

Zika virus (ZIKV) is transmitted by mosquitoes and causes Dengue-like illness, neurological symptoms such as Guillain-Barré Syndrome and microcephaly in children born to infected pregnant mothers. Recently, the World Health Organization (WHO) declared ZIKV infection as a Global Health Emergency. However, there are no known prophylactic or therapeutic measures against this virus. As a proof of concept toward combination therapeutic strategy against ZIKV, combinations of host-targeted (Interferon-α and Interferon-ß) and direct acting (Sofosbuvir) antivirals were evaluated in a hepatic cell line (Huh7) using a Cytoprotection (CP) assay. The combination of these antivirals resulted in synergistic inhibition of ZIKV infection in the in vitro CP assay. Additional testing in a ZIKV yield assay demonstrated that combination treatment of these antivirals conferred >2-log reduction in the release of viral RNA. Measurement of ZIKV proteins in the cells infected with multiple ZIKV strains isolated from different geographical regions (Americas, Asia, and Africa) using an immunofluorescence assay confirmed the effective antiviral activity of this combination against ZIKV. These results demonstrate the in vitro proof of concept (POC) for using a combination approach utilizing the strengths of both virus and host-targeted antivirals. These results suggest the effectiveness of the combination strategy in combating ZIKV, in the in vitro systems. Further evaluation of such combination therapies in vivo might provide an impetus for the development of effective ZIKV therapeutic strategies.


Asunto(s)
Antivirales/farmacología , Hepatocitos/efectos de los fármacos , Interferón-alfa/farmacología , Interferón beta/farmacología , Sofosbuvir/farmacología , Virus Zika/efectos de los fármacos , África/epidemiología , Asia/epidemiología , Línea Celular Tumoral , Citoprotección , Femenino , Técnica del Anticuerpo Fluorescente , Hepatocitos/virología , Humanos , Embarazo , Prueba de Estudio Conceptual , Virus Zika/genética , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/epidemiología
17.
J Med Chem ; 60(14): 6220-6238, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28682067

RESUMEN

Acyclic nucleosides containing a 3-fluoro-2-(phosphonomethoxy)propyl (FPMP) side chain are known to be moderately potent antihuman immunodeficiency virus (HIV) agents, while being completely devoid of antiviral activity against a wide range of DNA viruses. The derivatization of the phosphonic acid functionality of FPMPs with a diamyl aspartate phenoxyamidate group led to a novel generation of compounds that not only demonstrate drastically improved antiretroviral potency but also are characterized by an expanded spectrum of activity that also covers hepatitis B and herpes viruses. The best compound, the (S)-FPMPA amidate prodrug, exerts anti-HIV-1 activity in TZM-bl and peripheral blood mononuclear cells at low nanomolar concentrations and displays excellent potency against hepatitis B virus (HBV) and varicella-zoster virus (VZV). This prodrug is stable in acid and human plasma media, but it is efficiently processed in human liver microsomes with a half-life of 2 min. The (R) isomeric guanine derivative emerged as a selectively active anti-HIV and anti-HBV inhibitor, while being nontoxic to human hepatoblastoma cells. Notably, the pyrimidine containing prodrug (S)-Asp-FPMPC is the only congener within this series to demonstrate micromolar antihuman cytomegalovirus (HCMV) potency.


Asunto(s)
Adenina/análogos & derivados , Antivirales/química , Ácido Aspártico/química , Nucleósidos/química , Organofosfonatos/química , Profármacos/química , Adenina/síntesis química , Adenina/química , Adenina/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Antivirales/síntesis química , Antivirales/farmacología , Línea Celular , Citomegalovirus/efectos de los fármacos , Farmacorresistencia Viral , Estabilidad de Medicamentos , Ésteres/síntesis química , Ésteres/química , Ésteres/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Herpesvirus Humano 3/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Microsomas Hepáticos/metabolismo , Nucleósidos/síntesis química , Nucleósidos/farmacología , Organofosfonatos/síntesis química , Organofosfonatos/farmacología , Profármacos/síntesis química , Profármacos/farmacología , Estereoisomerismo , Relación Estructura-Actividad
18.
Bioorg Med Chem ; 25(1): 408-420, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27908751

RESUMEN

Low molecular weight peptidomimetic inhibitors with hydrophobic pocket binding properties and moderate fusion inhibitory activity against HIV-1 gp41-mediated cell fusion were elaborated by increasing the available surface area for interacting with the heptad repeat-1 (HR1) coiled coil on gp41. Two types of modifications were tested: 1) increasing the overall hydrophobicity of the molecules with an extension that could interact in the HR1 groove, and 2) forming symmetrical dimers with two peptidomimetic motifs that could potentially interact simultaneously in two hydrophobic pockets on the HR1 trimer. The latter approach was more successful, yielding 40-60times improved potency against HIV fusion over the monomers. Biophysical characterization, including equilibrium binding studies by fluorescence and kinetic analysis by Surface Plasmon Resonance, revealed that inhibitor potency was better correlated to off-rates than to binding affinity. Binding and kinetic data could be fit to a model of bidentate interaction of dimers with the HR1 trimer as an explanation for the slow off-rate, albeit with minimal cooperativity due to the highly flexible ligand structures. The strong cooperativity observed in fusion inhibitory activity of the dimers implied accentuated potency due to the transient nature of the targeted intermediate. Optimization of monomer, dimer or higher order structures has the potential to lead to highly potent non-peptide fusion inhibitors by targeting multiple hydrophobic pockets.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/antagonistas & inhibidores , Inhibidores de Fusión de VIH/farmacología , Peptidomiméticos/farmacología , Sitios de Unión , Fusión Celular , Inhibidores de Fusión de VIH/síntesis química , Células HeLa , Humanos , Cinética , Modelos Químicos , Peptidomiméticos/síntesis química
19.
Antiviral Res ; 136: 51-59, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27825797

RESUMEN

Camptothecin (CPT) is a natural product discovered to be active against various cancers through its ability to inhibit Topoisomerase I (TOP1). CPT analogs also have anti-HIV-1 (HIV) activity that was previously shown to be independent of TOP1 inhibition. We show that a cancer inactive CPT analog (O2-16) inhibits HIV infection by disrupting multimerization of the HIV protein Vif. Antiviral activity depended on the expression of the cellular viral restriction factor APOBEC3G (A3G) that, in the absence of functional Vif, has the ability to hypermutate HIV proviral DNA during reverse transcription. Our studies demonstrate that O2-16 has low cytotoxicity and inhibits Vif-dependent A3G degradation, enabling A3G packaging into HIV viral particles that results in A3G signature hypermutations in viral genomes. This antiviral activity was A3G-dependent and broadly neutralizing against sixteen HIV clinical isolates from groups M (subtypes A-G), N, and O as well as seven single and multi-drug resistant strains of HIV. Molecular modeling predicted binding near the PPLP motif crucial for Vif multimerization and activity. O2-16 also was active in blocking Vif degradation of APOBEC3F (A3F). We propose that CPT analogs not active against TOP1 have novel therapeutic potential as Vif antagonists that enable A3G-dependent hypermutation of HIV.


Asunto(s)
Desaminasa APOBEC-3G/metabolismo , Camptotecina/análogos & derivados , ADN-Topoisomerasas de Tipo I/metabolismo , VIH-1/efectos de los fármacos , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G/genética , Camptotecina/farmacología , Línea Celular , Farmacorresistencia Viral/genética , Genoma Viral , Infecciones por VIH/virología , VIH-1/genética , VIH-1/fisiología , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Virión/metabolismo , Replicación Viral , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química
20.
Chem Commun (Camb) ; 53(1): 91-94, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27858001

RESUMEN

The HIV nucleocapsid NCp7-SL2 RNA interaction is interrupted in the presence of a formally substitution-inert gold(dien)-nucleobase/N-heterocycle AuN4 compound where the N-heterocycle serves the dual purposes of a template for "non-covalent" molecular recognition of the essential tryptophan of the protein, mimicking the natural reaction and subsequent "fixation" by Au-Cys bond formation providing a chemotype for a new distinct class of nucleocapsid-nucleic acid antagonist.


Asunto(s)
Compuestos Orgánicos de Oro/química , Compuestos Orgánicos de Oro/farmacología , ARN Viral/antagonistas & inhibidores , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...